Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 29: e20200870, 2021. tab, graf
Article in English | LILACS | ID: biblio-1250190

ABSTRACT

Abstract Bio-C Pulpecto (Bio-CP) was recently developed as the first bioceramic root filling material for primary teeth. Objective To evaluate the physicochemical properties of radiopacity, setting time, pH, cytocompatibility and potential of Bio-CP to induce mineralisation, compared with (1) Calen thickened with zinc oxide (Calen-ZO), and (2) zinc oxide and eugenol (ZOE). Methodology Physicochemical properties were evaluated according to ISO 6876. Saos-2 (human osteoblast-like cell line) exposed to extracts of the materials were subjected to assays of methyl thiazolyl tetrazolium, neutral red, alkaline phosphatase (ALP) activity and mineralised nodule production. The results were analysed using one-way or two-way ANOVA and Tukey's or Bonferroni's post-tests (α=0.05). Results All the materials showed radiopacity higher than 3 mm Al. Bio-CP had lower pH than Calen-ZO, but higher pH than ZOE. Calen-ZO and Bio-CP did not set. The setting time for ZOE was 110 min. The cytocompatibility order was Calen-ZO > Bio-CP > ZOE (1:2, 1:4 dilutions) and Calen-ZO > Bio-CP = ZOE (1:12, 1:24 dilutions) and Calen-ZO = Bio-CP > ZOE (1:32 dilution). Bio-CP induced greater ALP activity at 7 days, and greater mineralised nodule production, compared to Calen-ZO (p<0.05). Conclusions Bio-CP showed adequate physicochemical properties, cytocompatibility and potential to induce mineralisation.


Subject(s)
Humans , Root Canal Filling Materials , Dental Pulp Cavity , Osteoblasts , Root Canal Obturation , Tooth, Deciduous , Zinc Oxide-Eugenol Cement , Biology
2.
Braz. oral res. (Online) ; 34: e080, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132682

ABSTRACT

Abstract The aims of the present study were to compare conventional radiography, radiographs digitized with a scanner or photographic camera, and digital radiography, used to evaluate the radiopacity of endodontic materials, and to compare the accuracy of linear and quadratic models used to convert radiopacity values to equivalent millimeters of aluminum (mm Al). Specimens of AH Plus, Endofill, Biodentine and BioMTA materials (n = 8) were radiographed next to an aluminum step-wedge using radiographic films and digital radiography systems (FONA CMOS sensor, Kodak CMOS sensor and photosensitive phosphor plate-PSP). Conventional radiographs were digitized using a scanner or photographic digital camera. Digital images of all the radiographic systems were evaluated using dedicated software. Optical density units (ODU) of the specimens and the aluminum step-wedge were evaluated by a photo-densitometer (PTDM), used in conventional radiographs. The radiopacity in equivalent mm Al of the materials was determined by linear and quadratic models, and the coefficients of determination (R2) values were calculated for each model. Radiopacity of the materials ranged from -9% to 25% for digital systems and digitized radiographs, compared to the PTDM (p < 0.05). The R2 values of the quadratic model were higher than those of the linear model. In conclusion, the FONA CMOS sensor showed the lowest radiopacity variability of the methodologies used, compared with the PTDM, except for the BioMTA group (higher than PTDM). The quadratic model showed higher R2 values than the linear model, thus indicating better accuracy and possible adoption to evaluate the radiopacity of endodontic materials.


Subject(s)
Aluminum , X-Ray Film , Materials Testing , Radiography, Dental, Digital
SELECTION OF CITATIONS
SEARCH DETAIL